Thermal Conductive Filler Alumina Powder

Commonly used thermal conductive materials are:  auminum oxide nanopowder, zinc oxide nanopowder, magnesium oxide nanopowder, aluminum nitride, boron nitride, silicon carbide and so on.

Alumina Al2O3 has the advantages of thermal conductivity and insulation, and can be used as a thermally conductive filler to prepare thermally conductive insulating glue, potting glue and other polymer materials. Compared with other fillers, although the thermal conductivity of alumina is not the best, it can basically meet the basic thermal conductivity requirements. In addition, the price of alumina is relatively low, and the source is relatively wide. It is an economical and suitable filler for high thermal conductivity insulating polymers.

Hongwu Nano can produce white alumina micron powder in batches, with narrow particle size distribution, stable process and high thermal conductivity. According to customer feedback, the thermal conductivity can reach between 3-10W/(m*K) according to different filling amounts.

The particle size of alumina powder used for thermally conductive fillers is 1um, 500nm, 300nm, 200nm. The bulk price is more cost-effective.

Thermally conductive alumina can be widely used in different materials such as silica gel, potting glue, epoxy resin, plastic, rubber thermal conductivity, thermal conductive plastic, silicone grease, heat dissipation ceramics, etc. In practical applications, Al2O3 powder filler can be used alone or mixed with other fillers such as AIN and BN.

In order to improve the dispersibility of the alumina powder, the surface of the alumina can be modified with a silane coupling agent or hexadecyltrimethoxysilane.

If you want to know more about the thermal conductivity of alumina, please feel free to consult online at any time!

All About Aluminum Oxide Nanopowder

Nano-aluminum oxide, fumed silica is the use of the BET surface area obtained by gas-phase process is similar to the particle diameter of 100 ± 15 aluminum oxide 13 nm. Has all the advantages of hydrophilic fumed silica, improve static friction powder of positive chargeability.Nano aluminum oxide diameter distribution, high resistivity, with good insulation properties, widely used in plastics, rubber, ceramics, paints and other fields requiring high insulation performance.

A-MITE™ powders and dispersions are recently developed inorganic aluminum oxide nanopowder with unique abrasion resistance properties for use in optical lenses, windows, flooring and other surfaces and coatings prone to scratching. A-MITE-A™ products are uncoated and hydrophilic. A-MITE-O™ products are coated with an organic silane (1-4%) and are hydrophobic. Our oxide nanopowders are typically around 10nm, 50nm, 100nm, and/or 200nm. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil. For technical, research and safety information A-MITE™ or for more information on nanotechnology, please contact our customer service department.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth’s crust and the most abundant metallic element.Aluminum Bohr ModelAluminum’s name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn’t until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements’ catalog of aluminum products, visit the Aluminum element page.

Related reading: silicon dioxide nanoparticles Single-walled Carbon Nanotubes

An Introuduction of Aluminum Oxide Nanopowder

Aluminum oxide nanopowder Product Features:US3023 g-phase nano-Al2O3 with small size, high activity and low melting temperature, it can be used for producing synthetic sapphire with the method of thermal melting techniques; the g-phase nano-Al2O3 with large surface area and high catalytic activity, it can be made into microporous spherical structure or honeycomb structure of catalytic materials. These kinds of structures can be excellent catalyst carriers. If used as industrial catalysts, they will be the main materials for petroleum refining, petrochemical and automotive exhaust purification. In addition, the g-phase nano-Al2O3 can be used as analytical reagent.

Aqueous Dispersions

NanoArc® Aluminum Oxide nanoparticles are available as concentrated (up to 50 wt%) dispersions in DI water. The aqueous NanoArc® Aluminum Oxide dispersions feature proprietary surface treatment technology to enable formulation of the nanoparticles into systems ranging from pH 4 to 10.

The technology also ensures compatibility of the NanoArc® Aluminum Oxide nanoparticles with aqueous formulations containing emulsion resins, both in-can and post-cure.

In addition, untreated NanoArc® Aluminum Oxide is available as a low pH (< 5) aqueous dispersion for applications not requiring the compatibility surface treatment. Solvent Dispersions Dispersions of NanoArc® Aluminum Oxide nanoparticles are available as concentrates (up to 50 wt%) in polar hydrocarbon solvents such as PMA (propylene glycol methyl ether acetate), nonpolar solvents such as mineral spirits, and protic solvents such as alkoxyethers. The NanoArc® Aluminum Oxide dispersions feature surface treatment technologies designed specifically for the solvent class, and tailored to be compatible with a wide range of application formulations employing solvents in these classes. In addition, custom dispersions of NanoArc® Aluminum Oxide can be provided for specific solvent types or application needs (e.g. non-volatile liquids, plasticizers, etc.). Monomer Dispersions NanoArc® Aluminum Oxide nanoparticles are available as concentrated (30 wt%) dispersions in low viscosity acrylate monomers such as TPGDA (tripropyleneglycol diacrylate) and HDDA (1,6-hexanediol diacrylate). These dispersions can be used to incorporate NanoArc® Aluminum Oxide nanoparticles into a wide variety of UV-cured coating formulations. The NanoArc® Aluminum Oxide nanoparticles are surface treated for compatibility, and do not interfere with the radiation cure process of the coatings. Other low viscosity acrylate monomer dispersions of NanoArc® Aluminum Oxide are also available on a custom basis. Custom Dispersions Nanophase metal oxide nanoparticles are available in a variety of concentrated dispersion forms, each featuring proprietary surface treatment technology to ensure complete dispersion to the primary particles and to prevent any aggregation upon incorporation into application systems. Related reading: nano diamond powder Silver Nanoparticles Antimicrobial