Oxidation Catalysis by Pure Nano gold powder

The historical notion regarding the inability of gold to catalyze reactions has been discarded in view of recent studies, which have clearly demonstrated the high catalytic efficiency of supported nano-gold catalysts. Although nano-Au catalysts are known to catalyze a variety of reactions, the major focus has been on CO oxidation catalysis. In this work we focus on the important aspects related to the CO oxidation reaction. Special emphasis is placed on the studies undertaken on model nano-Au systems as these studies have considerably enhanced the understanding of the oxidation process. Pure Nano gold powder in a highly dispersed state can selectively oxidize CO in the presence of excess hydrogen (of tremendous interest to state-of-the-art low-temperature fuel cells); related studies are addressed in this review. The nano-gold catalysts have also been investigated for the direct vapor-phase oxidation of propylene to propylene oxide in the presence of molecular oxygen; these investigations are highlighted in this work.
Gold nano-particles confined in the walls of mesoporous silica (GMS) catalysts were successfully prepared by a novel and simple technique utilizing thioether functional groups in the walls of mesoporous silica to anchor HAuCl4. Calcination of the materials removed organic moieties and reduced the gold salt to gold nano-particles. In this procedure, the thioether groups were introduced into the silica wall via a co-condensation of tetraethyl orthosilicate (TEOS) with 1,4-bis(triethoxysily)propane tetrasulfide. These gold containing mesoporous catalysts have unusually high surface area and pore volume.
The catalysts were evaluated for the solvent free liquid phase oxidation of benzyl alcohol by molecular oxygen. High selectivity to benzaldehyde was obtained under the reaction conditions of 403 K, 15 atm and 5 h in an autoclave. The 1.5% GMS catalyst was also evaluated for oxidation of alcohols using toluene as solvent under flowing oxygen at atmospheric pressure at 353 K in a two-necked flask. Under these conditions the conversion of benzyl alcohol reached 100% after 2 h and it was demonstrated that the catalyst can be recycled three times without significant loss of activity.