While platinum-group metals (PGMs) make the most stable and active catalysts

Hongwu International Group Ltd, with HWNANO brand, is a high-tech enterprise focusing on manufacturing, research, development and processing of nanoparticles,nanopowders, micron powders. 

In a paper published recently in the journal Angewandte Chemie, an MIT team has explained a process of synthesizing catalysts made using modified tungsten carbide (WC) Nitrides Nanoparticles as an alternative to platinum.

While platinum-group metals (PGMs) make the most stable and active catalysts, they are unsustainable resources.

In this way, tungsten, with six valence electrons, can be electronically modified to mimic platinum, which has 10 valence electrons, by reacting it with carbon (four valence electrons) to give the ceramic material tungsten carbide. Numerous studies have shown that WC is indeed platinum-like, and able to catalyze important thermo and electrocatalytic reactions that tungsten metal cannot such as biomass conversion, hydrogen evolution, oxygen reduction, and alcohol electrooxidation. Importantly, tungsten is more than three orders of magnitude more abundant than platinum in the Earth’s crust, making it a viable material for a global renewable-energy economy. 

The team’s next steps include the synthesis of other bimetallic TMCs, as well as transition metal nitride (TMN) Nitrides Nanoparticles. The team is investigating these materials for other electrocatalytic reactions as well as thermal catalytic reactions, such as hydrodeoxygenation for biomass reforming.

This new method unlocks a broad range of monometallic and heterometallic transition metal carbide and nitride Nitrides Nanoparticles that researchers previously have been unable to synthesize or study,” said Yuriy Rom¨¢n, an assistant professor of chemical engineering who worked on the technology. “While our research focuses mainly on the sustainable replacement of PGMs in thermal and electrocatalytic applications, we also anticipate broader impacts of our new TMC and TMN technologies outside catalysis. Because of their unique chemical, mechanical, and electronic properites, carbides and nitrides have garnered much attention for use in applications as diverse as supercapacitors, medical implants, optoelectronics, coatings, and high-temperature materials for the aerospace and nuclear sectors.”
Related reading:Nitrides Nanoparticles Electronic Energy Saving Lamp 3G Wifi Router Power Bank Xinjiang tour