Zinc Oxide Nanotechnology for Future

Nano Zinc Oxide is a new high for the 21st century, the function of high value-added fine inorganic chemical products. Its diameter is between 1100 nm, also known as ultrafine zinc oxide. Since the fine crystal grains, the surface electronic structure and crystal structure changes, resulting in a surface effect macroscopic objects do not have the volume effect, quantum size effect and macroscopic tunnel effect and high transparency, high dispersion characteristics. In recent years, we found that it demonstrated in catalysis, optics, magnetism, mechanics and so on a number of special features that make it in many areas of ceramics, chemicals, electronics, optics, biology, medicine and other important application value, can not have an ordinary zinc oxide compare specificity and purposes. Due to a series of nano zinc oxide rods are excellent and very attractive prospect, and therefore has become the focus of many research and development of nano-zinc oxide scientific and technical personnel concerned.

Nanotechnology is the science of constructing components, devices, materials and systems at a nanometer level which means “near-atomic.” The word “nano” is synonymous with one-billionth. So, in nanotechnology, the works and operations happen at the scale of 1/1,000,000,000 (one over one billionth) of a total meter. Such dimension or size is so small and thin. It is about 100,000 times smaller and slimmer than a strand of hair.

An atom, which is the building block of matter, is about this small. For instance, a DNA molecule, life’s blueprint and basic foundation of human genetics, is two nanometers in length. If a material is of this size, it is expected to have unique chemical and physical properties which are caused by several factors such as the significant increase in the surface area of the material as compared to its volume which happens when a particle becomes smaller.

Why is Nanotechnology Important?

Nanotechnology is playing a very important role today and in the future to change and improve every aspect of human activities. Nanotechnology influences a lot of materials used for manufacturing important items. These materials include biomaterials, ceramics, metals and polymers. The new and improved materials formed through nanotechnology are the source of most important technological advances. As of today, nanotechnology is used on following commercial applications:

Sunscreen Lotion – Through zinc oxide particles which have a “nano” size, ultraviolet (UV) rays are absorbed and reflected. As a result, sunscreen lotions appear transparent and are smooth when applied. Before, a sunscreen lotion is white and really sticky. Through, nanotechnology, these lotions are more attractive to customers.

Self-cleaning and scratch proof window – This kind of window is actually coated with a special material that has distinctive chemical properties. Once the sun shines on these self-cleaning windows, the material starts to have a chemical reaction and results to breaking down the dirt on it. Also, if there is rain, no droplets are formed. The rainwater is evenly spread on the window panel and it washes away the dirt that was broken down. The nanoscale controls the thickness of the layer.

Stain-repellent cloth or fabric – This is actually a fabric made of dipped woven rolls of cotton fabric in liquid form that has trillions of nanotechnology fibers. The cotton is dried inside an oven that binds these infinitesimal fibers of the cotton thread. As a result, the fabric becomes resistant to liquid although its physical appearance does not change.

Bouncing tennis ball – These balls are specially coated with a nano-sized material. The molecular barrier of the ball that formed because of these minute particles traps the molecules of air, thus, making the tennis ball bouncier.

Other Remarkable Uses of Nanotechnology:

– Organic Light Emitting Diodes (OLEDs) – for monitor or TV screen displays
– Photovoltaic Film – for conversion of light to electricity
– Hip Joint – formed through biomaterials
– Bucky Tube Frame – this is light but remarkably very strong material
– Nano-particle paint – used to avoid corrosion
– Thermo-chromic glass – regulates light
– Magnetic Layers – used for compressed data memory storage
– Carbon Nanotube – fuel cells used to operate vehicles and electronics

In the future, nanotechnology can change the theories and applications we believe and use. The fields of manufacturing, information technology, electronics and communications have very advance future if nanotechnology is further enhanced.

Related reading: silicon carbide whisker aluminum oxide nanopowder

Current Nanoparticles Technology

Nanotechnology is an emerging high-tech in recent years. “Nano” mainly refers to the nanometer (one length unit of measurement equal to 1 / 1000,000,000 meters) near the material scale, which manifested in different areas and for special performance called “nanotechnology”, its specific definition see the term “nanotechnology.”Copper Oxide Nanoparticles is popular today.

What is nanotechnology? It refers to a field of applied science and technology whose theme is the control of matter on the atomic and molecular levels. It makes compounds very, very small. It is supposed to deliver more effective and faster results. It makes products lighter, stronger, cleaner, and less expensive. This technology has not been thoroughly tested and we don’t know how safe it is; especially on the delicate areas of the face. The FDA has not done much research. As yet, it seems not to have any adverse effects nor have any cases emerged. However, some experts wonder about the safety because when particles get very small, they tend to develop new chemical properties. Nanoparticles can slip through skin layers, and that means they can potentially interact with the immune system and bloodstream, and possibly become toxic and damage tissue.

I did not know anything about nanotechnology until I read an article by Forbes.com, “How to Become a Billionaire.” Pete Newcomb senior editor at Forbes was answering questions on how the rich become rich. He said that to become a billionaire you need to invest, take risks, think outside the box, have big ideas and a great capacity for creative thinking, love what you do, and also think of an idea we haven’t heard of yet. Two industries of interest he mentioned were nanotech and organics. Since I am in the beauty industry and have read about organic cosmetics and not nanotech, I began to do some research. Both of these are growing markets in cosmetics. Even though nanotech was new to me, it has been around for awhile. Nippon Keidaren (Japan Business Federation) is a comprehensive economic organization born in May 2002. They forecasted that nanotech in the domestic market will gross 27 trillion by year 2010. All of the major cosmetics companies like L’Oreal, Estee Lauder, and Shisedio have nanoparticles already in many of their products. A lot of this technology is used in the anti-aging products and in sunscreens.

All major cosmetics companies do test their products and there are laws that cosmetics companies have to follow to insure products are safe, but the FDA only investigates cosmetics if safety questions emerge after a product has been on the market. The testing of nanoparticles in cosmetics continues to be tested by the big cosmetic companies using the technology. For me, the jury is still out.

I’ve worked for several cosmetics companies and tried many of their products that have this technology and have had no issues. I am not a chemist or researcher. I am a makeup artist. One of the most important aspects of makeup is the skin. After reading and learning more about nanotechnology in cosmetics, it is a bit disturbing because it may be toxic. Cosmetic companies are making these products because they are less expensive to make, they have faster results and more benefits. The companies sell whole skin care systems because they specify that they work synergistically, and have more effective results. However, whole systems may be even more toxic to the consumer, if they contain nanoparticles. Are these companies taking enough precautions to prove these products are safe? Short term, it may reduce wrinkles and lift, but long term can it cause cancer or breakdown your immune system, or damage the tissue on your face? I have changed my philosophy regarding some of these products.

To live consciously with the universe, use products that are not used in animal testing, use products that are free of parabens. Even consider making some of your own products. Try organic or natural products. If the nanoparticle in the cosmetic product is a natural compound like green tea or grapeseed extract, it is probably of no harm. But be aware of chemicals. Cosmetics are full of chemicals do you want these chemicals to enter your bloodstream and be more harmful long term. As a consumer and promoter of skin care products, I encourage my clients to do self work and study to educate themselves, ask your dermatologist. Don’t take everything said by a sales person as complete fact. If they tell you a product is going to reduce wrinkles 20% , lift your sagging skin, or make your skin soft and supple; that may happen at the moment – short term, or while your using that product continually. It may be a quick fix, but that’s not what you want when you’re caring for one of the most important organs of your body, your skin, which has a major role in protecting and presenting you. Think seriously about what you’re putting on your face and read, read, read the labels of the cosmetics you’re using.

Related reading: ruthenium metal powders silicon dioxide nanoparticles

Discovery of Silicon Carbide

Silicon carbide (SiC) with quartz sand, petroleum coke (or coal), wood chips (the production of green silicon carbide need to add salt) and other raw materials by high temperature resistance furnace smelting. Silicon carbide also exists in nature, rare mineral moissanite. Silicon carbide, also known as Moissanite. In contemporary C, N, B and other high-tech non-oxide refractory materials, and silicon carbide is the most widely used, most economical, can be called emery or refractory sand. China’s industrial production of silicon carbide is divided into two kinds of black silicon carbide, and green silicon carbide, are hexagonal crystals, a specific gravity of 3.20 – 3.25, the hardness of 2840 ~ 3320kg / mm2.

Silicon carbide was accidentally invented by Edward G. Acheson different field in 1891, while trying to manufacture artificial diamonds. A mixture of fine sand and charcoal brick is about the inner conductor resistance furnace carbon. Current passing through the furnace to bring the carbon in the coke and silica sand, a chemical reaction to form the compound of SiC and carbon monoxide gas. In the end you have a green and black crystal like components, these components after crushing and grinding into various sizes each use. The crystals were deeper, smaller purity. Some natural silicon carbide was found in Arizona Grand Canyon Diablo meteorite. Most of the sales to the worldwide silicon carbide is synthetic.

Acheson patented the method of making silicon carbide in 1893. Silicon carbide is also called carborundum because Acheson was trying to dissolve carbon in molten corundum (alumina) when this material was discovered,and now silicon dioxide nanoparticles is popular very much. It was first put to use as an abrasive and later used in electronic applications. It was also used as a detector in radios in 20th century. In 1907 LED was first produced by Henry Joseph Round by applying high voltage to silicon carbide crystals.

This chemical has low density, high strength, low thermal expansion, high thermal conductivity, high hardness, excellent thermal shock resistance, and fantastic chemical inertness. Due to its properties it is widely used in suction box covers, seals, bearings, ball valve parts, hot gas flow liners, heat exchangers, semiconductor process equipment and fixed and moving turbine components.

In today’s world it is commonly used in abrasives such as grinding, water-jet cutting, sandblasting etc. Particles of the silicon carbide are used in sandpaper. It is also found in various automobile parts such as brake disks due to its resistance to extreme temperatures. The compound is also used in the mirror of the astronomical telescope because of its rigidity and hardness and thermal conductivity. It is also used to melt glass and non-ferrous metals, production of ceramics, float glass production, steel production, as catalyst support, graphene production etc.

It is also used as a gemstone in jewelery and is referred to as “moissanite” and is similar to diamond in its hardness with a Mohs hardness rating of 9. It is much more resistant to heat and lighter than diamonds and hence has more shine, sharper facets. It has also become a very popular diamond substitute.

Related reading: aluminum oxide nanopowder silicon carbide whisker