Zinc Oxide Nanotechnology for Future

Nano Zinc Oxide is a new high for the 21st century, the function of high value-added fine inorganic chemical products. Its diameter is between 1100 nm, also known as ultrafine zinc oxide. Since the fine crystal grains, the surface electronic structure and crystal structure changes, resulting in a surface effect macroscopic objects do not have the volume effect, quantum size effect and macroscopic tunnel effect and high transparency, high dispersion characteristics. In recent years, we found that it demonstrated in catalysis, optics, magnetism, mechanics and so on a number of special features that make it in many areas of ceramics, chemicals, electronics, optics, biology, medicine and other important application value, can not have an ordinary zinc oxide compare specificity and purposes. Due to a series of nano zinc oxide rods are excellent and very attractive prospect, and therefore has become the focus of many research and development of nano-zinc oxide scientific and technical personnel concerned.

Nanotechnology is the science of constructing components, devices, materials and systems at a nanometer level which means “near-atomic.” The word “nano” is synonymous with one-billionth. So, in nanotechnology, the works and operations happen at the scale of 1/1,000,000,000 (one over one billionth) of a total meter. Such dimension or size is so small and thin. It is about 100,000 times smaller and slimmer than a strand of hair.

An atom, which is the building block of matter, is about this small. For instance, a DNA molecule, life’s blueprint and basic foundation of human genetics, is two nanometers in length. If a material is of this size, it is expected to have unique chemical and physical properties which are caused by several factors such as the significant increase in the surface area of the material as compared to its volume which happens when a particle becomes smaller.

Why is Nanotechnology Important?

Nanotechnology is playing a very important role today and in the future to change and improve every aspect of human activities. Nanotechnology influences a lot of materials used for manufacturing important items. These materials include biomaterials, ceramics, metals and polymers. The new and improved materials formed through nanotechnology are the source of most important technological advances. As of today, nanotechnology is used on following commercial applications:

Sunscreen Lotion – Through zinc oxide particles which have a “nano” size, ultraviolet (UV) rays are absorbed and reflected. As a result, sunscreen lotions appear transparent and are smooth when applied. Before, a sunscreen lotion is white and really sticky. Through, nanotechnology, these lotions are more attractive to customers.

Self-cleaning and scratch proof window – This kind of window is actually coated with a special material that has distinctive chemical properties. Once the sun shines on these self-cleaning windows, the material starts to have a chemical reaction and results to breaking down the dirt on it. Also, if there is rain, no droplets are formed. The rainwater is evenly spread on the window panel and it washes away the dirt that was broken down. The nanoscale controls the thickness of the layer.

Stain-repellent cloth or fabric – This is actually a fabric made of dipped woven rolls of cotton fabric in liquid form that has trillions of nanotechnology fibers. The cotton is dried inside an oven that binds these infinitesimal fibers of the cotton thread. As a result, the fabric becomes resistant to liquid although its physical appearance does not change.

Bouncing tennis ball – These balls are specially coated with a nano-sized material. The molecular barrier of the ball that formed because of these minute particles traps the molecules of air, thus, making the tennis ball bouncier.

Other Remarkable Uses of Nanotechnology:

– Organic Light Emitting Diodes (OLEDs) – for monitor or TV screen displays
– Photovoltaic Film – for conversion of light to electricity
– Hip Joint – formed through biomaterials
– Bucky Tube Frame – this is light but remarkably very strong material
– Nano-particle paint – used to avoid corrosion
– Thermo-chromic glass – regulates light
– Magnetic Layers – used for compressed data memory storage
– Carbon Nanotube – fuel cells used to operate vehicles and electronics

In the future, nanotechnology can change the theories and applications we believe and use. The fields of manufacturing, information technology, electronics and communications have very advance future if nanotechnology is further enhanced.

Related reading: silicon carbide whisker aluminum oxide nanopowder