Direct Laser Writing of Nanodiamond Films

Synthesis of diamond, a multi-functional material, has been a challenge due to very high activation energy for transforming graphite to diamond, and therefore, has been hindering it from being potentially exploited for novel applications. In this study, we explore a new approach, namely confined pulse laser deposition (CPLD), in which nanosecond laser ablation of graphite within a confinement layer simultaneously activates plasma and effectively confine it to create a favorable condition for nanodiamond formation from graphite.
Nano diamond powder is noteworthy that due to the local high dense confined plasma created by transparent confinement layer, nanodiamond has been formed at laser intensity as low as 3.7 GW/cm2, which corresponds to pressure of 4.4 GPa, much lower than the pressure needed to transform graphite to diamond traditionally. By manipulating the laser conditions, semi-transparent carbon films with good conductivity (several kΩ/Sq) were also obtained by this method. This technique provides a new channel, from confined plasma to solid, to deposit materials that normally need high temperature and high pressure. This technique has several important advantages to allow scalable processing, such as high speed, direct writing without catalyst, selective and flexible processing, low cost without expensive pico/femtosecond laser systems, high temperature/vacuum chambers.
The reaction of nanoscale diamond (ND) powder with an elemental fluorine/hydrogen mixture at temperatures varying from 150 to 470 °C resulted in the high degree of ND surface fluorination yielding a fluoro-nanodiamond with up to 8.6 at. % fluorine content. The fluoro-nanodiamond was used as a precursor for preparation of the series of functionalized nanodiamonds by subsequent reactions with alkyllithium reagents, diamines, and amino acids. The fluoro-nanodiamond and corresponding alkyl-, amino-, and amino acid-nanodiamond derivatives were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), and thermal gravimetry-mass spectrometry (TG-MS) measurements. In comparison with the pristine nanodiamond, all functionalized nanodiamonds show an improved solubility in polar organic solvents, e.g., alcohols and THF, and a reduced particle agglomeration.