The Tern Nano-Technology Article

Some time ago I ran across the tern Nano-Technology while searching the net. According to Wikipedia, a brief description is “the control of matter on an atomic and molecular scale”. The Nano-scale is so small it is hard to imagine. To give you some idea a typical penny is about 19,000,000 Nano meters in diameter.

Even as small as it is, Scientists and Engineers have discovered how to manage and manipulate these tiny Nano Element Particles into some very useful and amazing new materials. The other amazing aspect of Nano-Technology is that when elements are reduced to a Nano-scale their physical characteristics change. Solids turn to liquids, stable materials turn combustible, insulators become conductors and opaque substances become transparent. With this knowledge there are and will be some amazing new products introduced into our daily lives.

Although most experts think that the changes brought about by this new science would improve our way of living, some are not so sure. I still continued my quest for new products and would do a search every so often just to see what was out there or what was new. During one of those searches, I ran across a company called Cermet Labs Inc. Their web site was very impressive and the information presented on the site was interesting. They made some claims that I am sure we have all heard before, however since it involved Nano-Technology I read on.

They seemed to have a variety of evidence to back up their statements about what their product would do. I considered the independent lab tests presented and the data on the field testing. It sounded reasonable and I decided to give them a call for more information. As it turns out they were located in a Detroit suburb which was within easy driving distance for me. I make an appointment and met with their CEO and Sales Manager. They made a very detailed presentation about the science behind their product. I understood some of it and some I did not. I guess wasn’t as concerned about how to build a watch, just could I get the correct time. The end result was that I felt it was a reputable company and product; however I still wanted to prove to myself that the claims were true.

The old seeing is believing theory. We went out to the parking lot and injected a 10ml syringe into the oil filler inlet of my car. I discovered later we really did not install it exactly as the instructions called for but it was in the engine now so I was anxious to see the results. Since I hadn’t kept actuate records on my mileage I decided I had better start so I could have a before number to compare to. When I started to keep track of my mileage the car had 205,427 miles on it. I though the car ran well and was getting reasonable mileage. During the first 636 miles the mpg was 21.18 which I though was not bad for a full size 96 Buick Park Avenue.

I was told that during the first 2000 miles of the run in period my mileage could vary. After 1912 miles I was pleased to find that my mpg was now at 25.14. Also it seemed that the car just ran smoother and had reasonably good power. I stopped keeping track for a while and just went about my normal driving. One day it seemed like I was going through a tank of gas quicker that usual. So I decided to check a tank full just to see if anything had changed. My odometer now read 213056 miles and the tank full of gas gave me 24.63 miles per gallon.

According to the EPA rating when the car is new, it should produce 17 and 27 highway. Considering the age and I believe I got this car miles mileage and the best performance is possible. I also believe that, the car’s performance and it is a ceramic ceramic processing laboratory reason. As a side note, I have to laugh when I saw a new car, claiming they will get 27 miles per gallon, $30000 worth of TV advertising. I can fill the tank at $30000 600. It is about 230000 miles.

Related reading:Chromium nanoparticles tungsten carbide cobalt nanopowder

Low Cost Synthesis of Silicon Carbide Nanopowders

Among modern ceramic materials, silicon carbide (SiC) and silicon nitride (Si3N4) has been successfully used in a variety of high-tech applications. SiC provides the effective combination of mechanical properties. It is widely used as an abrasive material and structure. It has high hardness, chemical inertness, than the melting temperature of the steel wear and oxidation of it for serious conditions such as high temperature sealing valve, rocket nozzle and wire drawing die and extrusion die for bearing applications because of its good wear resistance and corrosion resistance. In the tube by SiC to find its thermal properties and creep resistance of high temperature and hot electron exchange. The heating element from SiC. They can produce a high temperature of 1650 DEG C and medium in the air or inert considerable life. However, with any contact with water or hydrocarbon gas, can influence their age.

Silicon nitride has comparatively lower oxidation resistance and higher thermal conductivity than SiC. Major applications of silicon nitride are as automotive and gas turbine engine parts. It has high strength, fracture toughness and refractoriness which are required properties for ball bearings, anti-friction rollers. It performs remarkably when exposed to molten metal and/or slag.

A combined form of silicon carbide and nitride has been developed as silicon carbide grains bonded in silicon nitride matrix. This Si3N4-bonded silicon carbide is used for some critical applications where very high thermal shock resistance is required. For instance, in particular case of flame-out engine start-up, temperature reaches from ambient to 1600 °C in few seconds followed by an abrupt decrement to 900 °C in less than one second. Si3N4-bonded silicon carbide exclusively endures these conditions.

Traditional methods to produce these ceramic materials are energy intensive and hence expensive. For example, the Acheson process, which is the most widely adapted method to produce commercial-grade SiC, essentially takes 6 – 12 kWh to yield one kg of SiC. An inexpensive method, that uses low cost agro-industrial byproduct, is the pyrolysis of rice husks, first carried out by Lee and Cutler in 1975. Since then many researchers have discussed and used various process routes and modifications to obtain Silicon Carbide Nanopowders and/or silicon nitride, either in particulate or in whisker form, from rice husks.

Morphological studies on RH reveal that micron size silica particles are distributed in cellulosic part of RH. When these silica particles are made to react with carbon in biomass part of RH under specific experimental conditions, silicon carbide can result. Moreover, besides silicon carbide, modifications in process mechanism lead to formation of some other industrially useful products, viz. silicon nitride, silicon oxynitride (Si2N2O), ultra-fine silica, and solar-cell grade silicon.

Related reading: nano particles nano oxides

 

 

 

 

Carbon Nanotubes For Solar Energy Systems

With the high demand of each priority list of alternative sources of energy, in every state of the engineer working with the hope to save the solar energy can provide the enterprises and individuals more gentle. Solar energy technology, and one of the most spectacular improvement is the introduction of carbon nanotubes (hollow tubes of carbon atoms) is a new solar power system. Carbon Nanotubes are not a recent discovery, they proposed a few years ago, they are their own strength promotion. People realize that they can be used in aircraft construction, lighter and stronger cars, buildings, and even soft ball. However, the fact that the new solar energy, carbon nanotube has launched in the solar system the system stored energy level increased in 100 times more common photovoltaic solar cells.

This finding is credited, for the most part, to a group of MIT chemical engineers. Through their research, they found that by using carbon nanotubes, solar energy can be super concentrated. Their studies showed that the nanotubes could form antennas that are capable of capturing and focusing light energy more effectively thus allowing smaller and more powerful solar arrays.

According to a recent study released in the Journal of Nature Materials by Michael Strano, Associate Professor of Chemical Engineering at MIT and the associated research team, the carbon nanotube antenna, or as they call it the “solar funnel”, might also be useful for other applications that require concentrated light. Among these applications, they specifically made mention of night vision goggles and telescopes.

At the most basic level, the way this process works; solar panels generate electricity by converting photons (packets of light energy) into an electric current. The nanotube boosts the number of photons that can be captured and then transforms this increased level of light into energy that can be funneled into the solar storage cell.

What the MIT team accomplished was the construction a special antenna consisting of fibrous ropes, only 10 micrometers (millionths of a meter) long and 4 micrometers thick. Each fibrous rope contained about 30 million carbon nanotubes. These ropes or micro fibers were made up of two layers of nanotubes with different electrical properties or bandgaps*. The inner layer of the antenna contained nanotubes with a smaller bandgap than the outer layer. This is important because excitons flow from high energy to low energy or, in this specific case, from the outer layer to the inner layer where they can exist in a lower, yet still excited, energy state.

So, what does all of this mean? Well, when light energy strikes the antenna, all of the excitons flow to the center of the fiber where they are concentrated and stored. Better methods of energy storage translate to improved efficiency and improved efficiency means more economical energy resources. As solar power becomes more economical more people will migrate to solar panel installation and solar powered homes and businesses.

The electrons can exist at different energy levels of any material existence.When the excitation energy of the electron is more a photon hits the surface in the material level, to be specific, particular material. The interaction between the excited electrons and holes left called excitons. The band gap of the difference between the electron and hole energy levels of labeled.

Related reading: nano powders nano particles

 

 

The History Of Static Electricity

History

People have dealt with and managed the problems of static electricity for hundreds of years.For example, at the beginning of the fifteenth Century, military fortress, static control program implemented in the treatment of black powder to prevent ignition from electrostatic discharge (ESD). In early 1860, Vin Mills in the American use grounding and flame ionization techniques to eliminate static electricity steel tube and paper in the drying process of network. When American Navy sent the first nuclear submarine in the 50’s of the last century in the Arctic, typical of the antistatic agent used to reduce electrostatic influence to navigation equipment. Over the years, as electronic devices become smaller, faster, therefore, more vulnerable to the destructive effect of static electricity. In order to ensure the normal operation of electrical equipment to the electrostatic, Navy needs some form of control. Because the navy task, static control and increasing awareness of the whole world. Then, static control, industrial development, products and equipment control of electrostatic and electrostatic discharge.

Definitions

According to Grolier’s encyclopedia, Static Electricity is electricity at rest or the accumulation of electric charge, as opposed to an electric current which is the movement of electricity. The flow or movement of people and/or materials in and through the environment causes separation and therefore static electricity. A familiar example is when a person walks across a carpeted floor. Static Electricity is generated simply by the contact and separation of the soles of shoes from the carpeted floor. ESD occurs when the electrostatic charge is transferred from a material that carries the charge to an electrostatic sensitive device. In the example above this ESD is the shock felt after walking across the carpeted floor and then touching a door knob. It is this ESD, which comes in varying degrees, that can be most damaging to electrical devices and other industrial, commercial and consumer products.

Examples

Static Electricity, a natural phenomenon, and consequently ESD are the primary causes of multiple number of problems affecting industry, business and personal life. These problems can be as simple as the shock resulting from walking across a carpet; as costly as the destruction of sensitive electronic components or jamming of machinery; and as dangerous as the ignition of combustible vapors, powders or dust. Typical problems caused by static;

Attraction of dust, dirt and bacteria to all environmental surfaces, as well as to products and product packages Damage or destruction of sensitive electronic components and sub-assemblies during manufacture, testing, packaging, shipping or receiving.

Computer and electronic office equipment data errors memory loss, system failures and other glitches.

Charge generation on surfaces of tote boxes and carriers used to process and store electronic components can create a potential for discharge. Jamming or slipping of paper, plastics or other material during printing, packaging or converting. Ignition of combustible vapors, dust or solvents causing fire or explosion. Irregularities caused by static in high quality printing, heat sealing, silk screening, lamination and other applications.

Work benches and production surfaces in electronic manufacturing and repair facilities will triboelectric charge components, assemblies, or their handling containers in contact and separation with a surface thereby creating a discharge

FACTS

1. Almost any material can generate static electricity. The ability to store or dissipate the charge depends on the type of material

2. Static can cause damage to sensitive devices resulting in instant failure. In contrast, static damage can also go undetected for a period of times resulting in product failure once the product is in service.

3. Electrostatic fields are associated with charged objects

4. The degree of severity of ESD events is contingent upon the type of discharge which occurs.

Electrical Characteristics of Materials

In order to understand how to control the generation of static electricity and the prevention of ESD, one must know the different electrical characteristics of materials that can generate static electricity. There are four varying degrees of electrical resistance.

Conductive Silver Powders allows a charge to flow across or through its volume easily. Surface Resistivity < 106 ohms/sq The miracle of the products have been provide solutions for static control in the past 20 years in India.Our high quality products to help prevent the electrostatic discharge damage sensitive electronic components.Our products include electrostatic prevention personnel grounding, anti-static work surface, anti-static packaging.

Tungsten Carbide Cobalt Nanopowder Insert Recycling

Tungsten carbide cobalt nanopowder, also known as cemented carbide, is a relatively precious material which is critical to many manufacturing processes. Metal machining process must use tungsten carbide insert tool tip AS, AS hard alloy hardness and wear resistance of a hot ideal shaping, boring, and the metal workpiece. Face Mills the most modern, tool and cutter old lathe used for cutting tools.

The only downside of using carbide inserts for such a wide range of machining processes is that the tungsten material used in creating tungsten carbide alloys is both scarce and expensive. With most tungsten reserves in the US and other Western countries exhausted, China supplies over 80% of the tungsten used worldwide. In 2005, the International Tungsten Industry Association estimated that at the current rate of global consumption, all tungsten reserves will be used up within 140 years. Tungsten carbide inserts are typically treated as disposable materials, even though only the cutting edges of the inserts are worn when they’re disposed.

Rather than disposing of inserts, many manufacturers are turning to recycling companies which purchase used tools.

Why Recycle Carbide Inserts?

Financial Benefits

Tungsten carbide is an expensive material, and most recycling companies are willing to pay for used scrap. By turning used inserts over to recycling facilities, manufacturers can recoup at least a portion of their expenses, lowering their overall material costs. Rates for scrap tungsten carbide fluctuate widely, depending on current market values.

Environmental Benefits

Because carbide inserts contain heavy metals, disposing of them in traditional ways can be quite harmful to the environment. Heavy metals may leech into the soil over time, contaminating ground water. By recycling these, these harmful effects can be largely avoided and global tungsten reserves can be preserved for future generations.

How to Find a Tungsten Carbide Insert Recycling Facility

As more manufacturers are becoming aware of the financial and environmental benefits of recycling inserts, more and more carbide scrap recycling facilities are becoming available around the world. Major worldwide toolmaking companies, including Sandvik Coromant, Kennametal and ATI Stellram, offer their own recycling services for customers. While these companies typically offer recycling services to their own customers, they generally offer a reimbursement for the carbide scrap.

Independent tungsten carbide insert and scrap recycling facilities offer an alternative which in many cases may be more financially beneficial to manufacturers. Carbide recycling providers such as Carbide Recycling Company and Machine Tool Recyclers, Inc. tend to offer the highest and most recent going rate for tungsten carbide, so manufacturers may get more in return for their scrap carbide.

Another option is to require manufacturers and their suppliers to help find the best hard alloy recyclers. Some manufacturers may provide internal circulation, or may have some other use of the waste. Turning with carbide blade back to their interests of suppliers, manufacturers can get a credit for future procurement suppliers.